/

Delta Media Server

DeltaRealTime User Guide

User Guide

M360-1 7 IHSENSE

DeltaRealTime User Guide : User Guide

Trademark Information

Delta Media Server is a trademark of 7thSense Design Ltd. Brand or product names may be registered
trademarks of their respective owners. Windows is a registered trademark of Microsoft Corporation in the

United States and other countries.

Copyright Information

All Rights Reserved. This document is copyrighted © by 7thSense Design Ltd and shall not be reproduced

or copied without express written authorisation from 7thSense Design Ltd.

The information in this document is subject to change without notice. 7thSense Design Ltd assumes no

responsibility for errors, and/or omissions contained in this information.

Printed: December 2020

This edition is for software version Delta 2.6 or later

Document ref.: M360-1

E: info@7thsense.one
W: 7thsense.one

7thSense Design Ltd

2 The Courtyard, Shoreham Road
Upper Beeding

Steyning

West Sussex

BN44 3TN

UK

T: +44 (0) 1903 812299

7thSense Design LLC, Michigan

332 E Lincoln Ave
Suite 100

Royal Oak, Ml 48067
USA

T: +1 248 599 2717

7thSense Design LLC, Orlando

4207 Vineland Rd
Suite M1

Orlando, FL 32811
USA

T: +1 407 505 5200

DeltaRealTime User Guide © 2020 7thSense

Contents

Overview 4
Modes of Use 5
Full Mode With Depth and Stencil 6

A. Solid object layering using depth, and blue in the stencil 7

B. Semi-transparent object layering, using depth, and green in the stencil 9

C. lllumination object layering, using depth, and red in the stencil 11

D. Putting it together: the RGB stencil 12

Real life worked example 12

Basic (Depth, Alpha, No Stencil) Mode 15
Minimal-demand mode: Delta Media Server only 17
Playback and Real-time Media Formats 17
Synchronisation 19
Real-time Fallback 19
How the Stencil Works 20
Assembling a Show in DeltaGUI 22
Document Information 24
Index 25

DeltaRealTime User Guide © 2020 7thSense

Overview

Overview

DeltaRealTime merges the high-fidelity playback of Delta Media server with real-time interactive
assets (e.g. from Unity, or Unreal Engine) to create real-time high fidelity, interactive 3D scenes,
whether for a game, exhibit, simulation environment or themed attraction.

DeltaRealTime achieves this by matching camera definitions for pre-rendered playback media and
real-time frames, and then compositing pre-rendered and real-time content based on depth and
mathematical definition (stencil) information, on a per pixel basis.

3D Depth

In order to merge playback and real-time sequences, we compare the depth buffer for each pixel of
the real-time asset with that of the playback frame, to determine which is in front. In the basic mode
of DeltaRealTime, any pixel of a real-time asset that is not in front, is not rendered, by using the alpha
channel. In this way, real-time assets moving about in the playback frame will move in and out, and
disappear behind features in the pre-rendered background. Depending on the range of depth values
required, the depth buffers can be 8, 16 or 24-bit (see Pl k and Real-time Media Formats *").
The greater the range, the better the effect.

Depth and alpha alone cannot blend the two layers and the visual result depends entirely on the
properties and quality of the RGB playback and real-time imagery (see Basic (No Stencil) Mode **).

Stencil feed

In the full implementation mode ® of DeltaRealTime, the Delta compositor also takes account of a
stencil feed, which provides further data in RGB channels to modify each pixel. If depth buffer
comparison shows that the real-time pixel is in front, then the stencil is used to re-evaluate the real-
time pixel: is it opaque, semi-transparent, or does it shade or brighten the playback pixel behind it? It
could be any combination, depending on the R, G and B values in the stencil pixel. This gives the
means of truly blending hi-fidelity interactive displays, using the power of Delta Media Server and the
Delta compositing engine (see How the Stencil Works).

Terminology

The following terms are used in this guide:

Playback sequence
Pre-rendered colour image media.

DeltaRealTime User Guide © 2020 7thSense

Overview

Real-time feed
Interactive gaming assets, to be introduced into the playback media (normally input into Delta
through a capture card or Spout shared texture).

Depth sequence
A separate pixel-matched media sequence, carrying depth values for each pixel of the
corresponding colour media. In this document, illustrations are portrayed as 8-bit depth, in
greyscale from white (nearest) to black (deepest).

Stencil feed
Matched to the pixels of the real-time feed, per-pixel data values are carried in the three colour
channels: alpha (in blue), semi-transparency (in green) and illumination (in red).

Culling
Where a stencil is not used, and a pixel in a real-time asset is (by depth comparison) to be
occluded by the background, the real-time image pixel does not need to be rendered, so is
simply ‘culled’, thus reducing processing load.

Modes of Use

A separate real-time gaming engine PC takes the load for rendering the interactive assets. In basic
mode, it is possible to host the real-time rendering engine on the same Delta Media Server, but only
for the simplest real-time scenes. A capture card, or cards, makes the real-time sequences and feeds
available to the DeltaGUI timeline, where they are layered with the pre-rendered playback media.

Mode External Delta Media RGB image stream Depth buffer feed Effects
gaming Server stencil
engine

Playback Real-time Playback Real-time Real-time

Full @ ® @ @ ® @ @

capability

Basic mode 9 @ 9 [] @ [] O

Delta server O @ 9 [] @ [] O

only

DeltaRealTime User Guide © 2020 7thSense

Modes of Use

Full Mode With Depth and Stencil

» Real-time (RT) gaming engine

3 media outputs: Delta Media Server

* RGB ¢ X x Real-time media inputs

Depth (optional)

—

capture * Playback media RGB
¢ Stencil (optional) —»
—>
—

card(s) » Playback media Depth
* Delta compositing engine

¢ Alpha (optional)
e Qther TBD

Real-time (Capture) layer
Data formats:

* RGB(A): colour (+optional Alpha)
¢ Depth: Depth*
» Stencil: Stencil

} ——p Composited Output

Playback (Pre-rendered) layer
Data formats:

* RGB: colour

¢ Depth: Depth*

*formats and scale must match

In this mode, the application of a stencil feed provides

e data values for illumination (e.g. blooming, fire, light sources) in the red channel
e data values for semi-transparency (e.g. mist, smoke, cloud) in the green channel, and

e data values for opacity (solid objects) in the blue channel.

For clarity, examples are given for each of these in isolation. However, an explosion might
simultaneously cast a shadow on the ground from the sun, illuminate an object beside it, but be semi-
transparent to a structure behind it.

The Delta compositing engine can equally be used to combine any combination: multiple gaming
inputs only (including background features), and/or with multiple playback resources. If multiple
gaming engines are used, these virtual cameras must be synced within the shared real-time world:

DeltaRealTime User Guide © 2020 7thSense

Modes of Use

p Real-time (RT) gaming engine(s), Delta Media Server (all cases)
each providing e X x Real-time media inputs
3 media outputs: per source
* RGB capture : ¥ o Delta compositing engine
* Depth (optional) card(s) Delta Media Server (optional)
e Stencil (optional) e Playback media RGB
* Alpha (optional) SE— ® Playback media Depth

T
real-time world sync’d example DeltaGUI timeline

Multiple real-time (capture) layers
Data formats:

* RGB(A): colour (+optional Alpha)
e Depth: Depth

* Stencil: Stencil

All formats and scale must match

Use this mode, combining all three feeds: media, depth and stencil, for the most realistic blending.

Here are three examples of how depth and each colour channel of the stencil are used together. For
the explanation of how the stencil is used to calculate the final composition of each pixel, see How
the Stencil Works'*

A. Solid object layering usin h, and blue in th ncil -’

9

B. Semi-transparent object layering, using depth, and green in the stencil

11

>
>
> [llumination object layerin in h, andred in th ncil
>

D. Putting it together: the RGB stencil z

A. Solid object layering using depth, and blue in the stencil

In these examples, if we were to composite multiple real-time feeds instead of with playback media,
then a stencil would be required for each real-time feed. The illustrations here are deliberately flat and
simple for clarity, but they are followed by a real-life worked example ™.

DeltaRealTime User Guide © 2020 7thSense

Modes of Use

Playback: a street scene

Image sequence RGB layer Image sequence depth layer

Real-time asset: an opaque kite

Video feed RGB layer Video feed depth layer Video feed stencil layer
(uses blue for alpha)

Output: in the composited scene, the kite flies between tree and houses

Compares depth: applies stencil (blue for alpha) composites playback and real-time
which pixels are in front? assets for output

DeltaRealTime User Guide © 2020 7thSense

Modes of Use

B. Semi-transparent object layering, using depth, and green in the
stencil
Playback: a street scene

Image sequence RGB layer Image sequence depth layer

Real-time asset: a cloud of smoke and shadow

Video feed RGB layer Video feed depth layer Video feed stencil layer
(uses green for semi-transparency)

p—

DeltaRealTime User Guide © 2020 7thSense

Modes of Use

Output: in the composited scene the cloud is between tree and houses and
casts a slight shadow on the facades

Compares depth: applies stencil (green for semi- composites playback and real-time
which pixels are in front? transparency and shadow) assets for output

DeltaRealTime User Guide © 2020 7thSense

Modes of Use

C. lllumination object layering, using depth, and red in the stencil
Playback: a street scene

Image sequence RGB layer Image sequence depth layer

Real-time asset: a spotlight beam

Video feed RGB layer Video feed depth layer Video feed stencil layer
(uses red to modify lightness)

Output: in the composited scene a beam of light illuminates the fagade

Compares depth: applies stencil (red for illumination) composites playback and real-time
which pixels are in front? assets for output

DeltaRealTime User Guide © 2020 7thSense

Modes of Use

D. Putting it together: the RGB stencil

Imagine the kite in the first example were silver. Its opacity is held in the intensity of the blue channel.
If sunlight were reflected off the kite onto the tree, this illumination would be rendered in the red
channel. At the same time, it could cast a shadow on the ground; this shadow-cast would be rendered
in the green channel.

Real-time kite is reflective but stencil carries illumination (in red), composites playback and real-time
opaque and casts shadow shadow (in green), and alpha (in blue) assets, adding light and shadow

Note: red and blue are shown
separately for clarity. In reality, if
viewed as RGB media, the colours
would appear mixed.

Real life worked example

In this worked example, an undersea scene is populated with swimming creatures from a single
gaming source. Multiple sources can be used; the principle is the same: all depths are compared,
stencils are applied and the final composited result is displayed.

What the illustrations show

e Playback and real-time asset frames are shown correctly in colour as they will be seen. They are
the only colour frames you see.

e Depth frames are greyscale (white is nearest). Areas with all-zero values for RGB are shown here
as black.

e Stencil frames have RGB values per pixel only as required. Here they are shown in a black frame
for clarity and contrast. These frames are never seen in colour, but are used in Delta as the stencil
data format.

DeltaRealTime User Guide © 2020 7thSense

Modes of Use

Playback

The playback media (as we move around the scene) comprises a (colour) media layer and a
(greyscale) depth layer:

Image sequence RGB layer Image sequence depth layer

Real-time captured assets

Over this, the captured real-time assets are (colour) creatures media also has a (greyscale) depth
layer:

Real-time sequence RGB layer Real-time sequence depth layer

Finally, a stencil (data) layer comprising: highlights (red channel), shadow (green channel), and alpha
transparency (blue channel) is added. First, here are the separate channels:

Highlights Shadows Alpha

DeltaRealTime User Guide © 2020 7thSense

Modes of Use

In practice, these are combined in a single RGB stencil image sequence, which is rendered in Delta
with the data format: Stencil R(+) G(x) B(Alpha):

Composited show

Putting it together, the display becomes an interactive show, combining the playback environment
with the real-time sea creatures:

DeltaRealTime User Guide © 2020 7thSense

Modes of Use

Basic (Depth, Alpha, No Stencil) Mode

Real-time (RT) gaming engine Delta Media Server

¢ 1 or2 x real-time media inputs
* Playback media RGB

e Delta compositing engine

2 media outputs:

* RGB P
¢ Alpha —

capture
card(s)

- :

In this mode, the real-time engine must use the 3D scene model when rendering. The alpha channel
output takes depth into consideration to pre-cull real-time pixels where playback pixels are in front.

Chroma Key options are available if simple compositing is all that is required, to avoid the need for an
alpha channel.

This could, as in full mode, composite any combination of multiple gaming inputs only, and/or with
multiple playback resources, though without the full depth and stencil feeds, offers none of the stencil
blending effects.

y Real-time (RT) gaming engines, Delta Media Server (all cases)
g * 1or2 xreal-time mediainputs
per source

each providing:

2 media outputs:

—_— capture
RGB iti i
. —_ card(s) * Delta cornp05|t1ng engrne
* Alpha —> Delta Media Server (optional)
’ e Playback media RGB
:*WI’ =
real-time world sync
Playback: a street scene
Image sequence RGB layer Image sequence depth layer

DeltaRealTime User Guide © 2020 7thSense

Modes of Use

Real-time asset: an opaque kite

Video feed RGB layer Video feed depth layer

Output: in the composited scene, the kite flies between tree and houses

Compares depth:
which pixels are in front?

where real-time pixels are in front, where playback pixels are in front, composites playback and real-time
culls pixels from playback assets, culls pixels from real-time assets, assets for output
using alpha channel: using alpha channel:

DeltaRealTime User Guide © 2020 7thSense

Modes of Use

Minimal-demand mode: Delta Media Server only

(Onboard real-time rendering engine)

In this mode, the real-time engine must use the scene model when rendering. The alpha channel
output takes depth into consideration to pre-cull real-time pixels where playback pixels are in front.

The real-time engine must not interfere with Delta Media Server loading. This mode is probably only
suitable for simple / lower load real-time scenes.

Delta Media Server

Real-time (RT) gaming ® Real-time media rendered in real-time engine

engine running on
Delta Media Server Sharing bring in as layer in Delta.

* Playback media RGB
* Delta compositing engine

Spout/Texture ki on Server. Shared texture (Spout) used to

As in Basic Mode, no stencil is used. Instead, the real-time assets are culled against the playback
media. Effects of semi-transparency and illumination or blooming are not available to the compositor
engine. The result depends entirely on the properties of the RGB playback and real-time imagery.

Playback and Real-time Media Formats

Although not essential, is it recommended that all playback (pre-rendered) media have the same
resolution and format.

Playback RGB(A) / colour frame sequence

Delta supports the following formats, depending on the performance specification of your server:
DPX 10 and 12-bit RGB 4:4:4 or 10-bit YUV 4:4:4
TGA 24-bit RGB or TGA 32-bit RGBA

.7th 10-bit 4:4:4 or .7th 10-bit 4:4:4:4 or 10-bit 4:2:2 or 8-bit 4:4:4 or 8-bit 4:2:2

DeltaRealTime User Guide © 2020 7thSense

Playback and Real-time Media Formats

Playback and real-time depth frame sequence format

Depth information is required as a TGA 24-bit RGB, or .7th 444 image sequence for 16-bit depth. For 8-
bit depth information an 8-bit TGA should be used.

DeltaRealTime currently supports 8, 16 or 24-bit depth data per pixel. 8-bit depth data should be
delivered as an 8-bit greyscale TGA sequence, giving 256 levels of depth. 16-bit depth data should be
stored in the Blue and Green channels of a 24-bit TGA, giving 2562 (65,536) levels of depth. 24-bit
uses R, G and B, giving 2563 (16,777,216) levels of depth. When RGB and Depth media sequences are
played together, we have a depth value and RGB colour value for every pixel in the playback media
frame.

Real-time Depth values are packed in R, G and B

B G (MsB)* | B(LSB)*
10101010 10101010 | 10101010
v) | v J
8-bit 16-bit
R (MSB) G B (LSB)
10101010 | 10101010 | 10101010
24-bit

* Most/Least Significant Bit

The packing format and scale of the real-time and playback depth video feeds must match that of the
playback RGB image media. See Playback depth frame sequence format for depth definitions.

Real-time video formats

All real-time inputs are captured into Delta Media server from a remote real-time rendering cluster.
Delta Media Server can support Display Port, HDMI, 12-G,3-G SDI inputs at 8 or 10 bits per pixel.

Real-time RGB feed

The real-time colour feed should contain all real-time generated assets only. The remainder of the
pixels in the frame should be black (0,0,0).

Real-time RGB(A) feed can also be from a shared texture (Spout) resource when real time engine is
running on Delta Media Server.

DeltaRealTime User Guide © 2020 7thSense

Synchronisation

Synchronisation

The per-frame camera definitions for playback and real-time views must always match. The pre-
rendered playback media is the master, as its path is fixed.

A common method to ensure paths are matched is to export a spline of the pre-rendered eyepoints
movement into the real-time engine. DeltaServer will periodically broadcast the current frame
position over UDP (e.g. every 60 frames). The real-time engine maintains its synchronisation along
the spline, based on the positional data from Delta Media server.

It is also recommended that the real-time graphics output and Delta Media Server graphics output be
genlocked at all times. It is essential to have frame-accurate positional synchronisation when using
DeltaRealTime.

Example Packets

An example of the protocol sent from Delta Media Server to the real-time source for synchronisation
is shown below:

drt_start id=1
// id is the instance of DeltaRealTime to be started. The default id=1
drt_pos id=1 frame=50

//the prerendered scene has a number of frames as part of its movement spline. The frame variable
indicates the frame position along the movement spline.

Notes

e AllUDP commands will be terminated by carriage return.

e UDP unicast or broadcast packets can be used.

Real-time Fallback

In the event of a failure in the real-time feed, the show can be made to switch into a default playback
mode using the IntelligentSource™ feature of Delta (from version 2.7). This will detect from the video
signal if the real-time feed is no longer live and switch in a replacement feed so that a show flow is
maintained.

IntelligentSource must be enabled in DeltaGUI, Display > Output Setup:

DeltaRealTime User Guide © 2020 7thSense

Real-time Fallback

Display Sub Modes >
Output Channel Mades Display Gamma
(® Mormal (Al In Line)
i) Composition Mode (Advanced Viewports)
() Matrix Mode (2D Aray) '
1 1
Output Colour Space Canvas Colour

(®) RGB (defautt)

Ox —

Colour Depth Projector / Screen Location
(@) 8 Bit Projectors are Inside the Screen
(010 Bit Dual Head (Side by Side) Projectors are Outside the Screen
()12 Bit Dual Head (Side by Side)
(") 10 Bit Dual Head (Pixel Irtedeaved) Intelligents ource
{312 Bit Dual Head (Pixel Irtedeaved) . .
Format [Output Enable:
Output Mode
oWl “

All channels output on
the graphics cardis)

Server Group Mode

Standard Warp & Blend are standard per server

s

It can then be enabled in any capture resource, in its Resource Editor, Timeline tab.

How the Stencil Works

The application of a real-time stencil feed provides values for illumination (e.g. blooming, fire, light
sources), for semi-transparency (e.g. mist, smoke, cloud), and for opacity (solid objects). The stencil

DeltaRealTime User Guide © 2020 7thSense

How the Stencil Works

defines the mathematical operations required, per pixel, to composite the real-time colour pixel and
playback colour pixel.

After the depth comparison between playback and real-time pixels, the stencil feed is applied if
required. As above, the following formulae are applied per pixel where:

PB = Playback image value

RT = Realtime input value

V = temporary calculated value
O = Output value

StencilR >0 Red: industry standard for blooming
N Y
Vree = PBree Vres = RTgres + (PBres x R)
Stencil G > 0 Green: industry standard for clouds,
fog, shadows etc.

(Oras = Vrea) @B = Vrea * (PBrae X@

| Blue: the industry standard for alpha.
StencilB>0 This feed should be anti-aliased along
with the RGB feed.

C Oree = Vras) @B =B x Vggp + (1-B x PBR@

Real-time assets (e.g. from Unity or Unreal gaming engines) have their own colour media (RGB),
depth buffer values and a stencil (per pixel mask) overlay. Together, we have depth value and colour
value for every pixel in the playback and real-time input frames.

Considerations

e Depth information is mainly useful if playback (pre-rendered) assets are opaque.

e For semi-transparent pre-rendered assets, the stencil plane generation needs to take depth into
account. This requires the real-time engine to have loaded all scene models / geometry.

DeltaRealTime User Guide © 2020 7thSense

Assembling a Show in DeltaGUI

Assembling a Show in DeltaGUI

DeltaRealTime operates in DeltaGUI 2.6 and above, which allows different data formats to be
interpreted in movie and capture resources.

Layers

Capture assets must be above the playback media, so are placed in a higher layer.

In this example, we have a movie playing in Layer 2, and alongside it a depth resource, providing per
pixel data of the movie for comparison.

Render order

In order to process the data formatted resources within a layer in the correct order, apply this render
order to each: Media, then Depth, then Stencil.

Data format: Depth

In this illustration, the depth media have been rendered in greyscale. In the properties of the depth
resource, Timeline tab, we assign the data format property of Depth (Intensity):

DeltaRealTime User Guide © 2020 7thSense

Assembling a Show in DeltaGUI

[_lavers W Updaee B |

LAYER 1* =]~

Capture 4 Spout Spoutl
[DEPTH (RGB) : Spout
=] STENCIL : Spout

LAYER 2 [=]

Movie TthFlyAni ionHD

DEPTH (RGB) : TthFlyAnimationHD

AN

Resource Editor @ 7thFlyAnimationHD X

General Timeline File(s) Screenlocation Animation Keying Colour

Timeline Position Options Options
From : l Layer |2 |2 l Feather |0 ~
Hrs Mins Secs Frms hd -
. ~ ;
. s Background [] I Data Format | Depth (Intensity) w
To: . Luma Invert []
Hrs Mins Secs Frms - b
Moo J[oo [z [0]2 Tmeine [1
l Render Order | 2 | = l
W
Cropping (Percent) |)|
Left Right Top Bottom

| 000 |ﬁ| 000 |A| 000 |A| 000 |*\
v W W W

[1q+1 | <

1

EN- s < [lNE

Cancel Aoply

Data format: Stencil

In the layer above this, we have placed three Spout capture resources - all from the gaming

engine/PC: one for the real-time colour display, another depth layer for comparing the capture with
the playback movie, and the stencil, which is used to recalculate each pixel for illumination, shadow
and alpha as described in this guide. The stencil resource data format is ‘Stencil R(+) G(x) B(alpha):

DeltaRealTime User Guide © 2020 7thSense

Assembling a Show in DeltaGUI

Resource Editor : Spout >

General Timeline Screen Location Animation Keying Colour

Timeline Position Options Options

W

Hrz MWins Secs Frms

Lo (oo][00 f:[o1]S] ecomneDd reater [0 |2
To: .
Opacity m" % [Data Format |Stendl R{+) G{x) B(alpha) ~]
Hrz Mins Secz Frms v {+) G{x) B{Alpha)

Lolour

oo [0 [0z][]¢ Timelne [1 o Luma 17vrt [ek Gntensiy)
SpoutD Lumakey (Red)
pou LumzKey (Green)
A
Render Order v Lumakey (Blue)

LumaKey (Alpha)

Shared Memory | Disabled - Depth (Intensity)
Depth (Red)
Cropping { Percent) |‘P| g:gﬁ EglruEEE)n)
L=t Right ~ Tep Bottom Depth (Alpha)
th

| 0.00 |*| 0.00 |h| 0.00 |h| 0.00 |‘\
W W W L

Cancel oply

Document Information

Date Document Software Revision Details Author/Editor
edition version
September 2018 1 Delta 2.6 New Release Andie Davidson

DeltaRealTime User Guide © 2020 7thSense

3 T

3Ddepth 4 terminology 4

B

basic mode: no stencil 15

D

DeltaRealTime
creating ashow 22

data formats 22

layer order 22

render order 22
depth

Delta data format 22
depth sequence 4

F

fallback mode 19
full mode: depth and stencil 6

IntelligentSource 19

M

media formats 17
minimal or simple mode 17

P

pixel-culling 4

S

stencil

blue channel 7

Delta data format 22

green channel 9

how it works 20

red channel 11

RGB combined 12
stencil feed 4
synchronisation 19

DeltaRealTime User Guide © 2020 7thSense

E: info@7thsense.one
W: 7thsense.one

7thSense Design Ltd

2 The Courtyard, Shoreham Road
Upper Beeding

Steyning

West Sussex

BN44 3TN

UK

T: +44 (0) 1903 812299

7thSense Design LLC, Michigan

332 E Lincoln Ave
Suite 100

Royal Oak, MI 48067
USA

T: +1 248 599 2717

7thSense Design LLC, Orlando

4207 Vineland Rd
Suite M1

Orlando, FL 32811
USA

T: +1 407 505 5200

	Table of Contents
	Overview
	Modes of Use
	Full Mode With Depth and Stencil
	A. Solid object layering using depth, and blue in the stencil
	B. Semi-transparent object layering, using depth, and green in the stencil
	C. Illumination object layering, using depth, and red in the stencil
	D. Putting it together: the RGB stencil
	Real life worked example

	Basic (Depth, Alpha, No Stencil) Mode
	Minimal-demand mode: Delta Media Server only

	Playback and Real-time Media Formats
	Synchronisation
	Real-time Fallback
	How the Stencil Works
	Assembling a Show in DeltaGUI
	Document Information
	Index

